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ABSTRACT

In this report, coherent detection on a pulsed rdadar is discussed from
a statistical decision theory viewpoint. The Neyman Pearson test is
applied to two cases; first,' where it is desired to detect targets moving
with one particular radial veloc.ity. and second, where it is desired to
detect targets at all velocities equally well. In the first case it is shown
that, in a sense, an ideal integrator is achieved; i.e., the results are
exactly the same as if all the power reflected from the target were re-
ceived in one pulse, rather than many. A mechanization for the second
case is given, The statistics for a suboptimum integrator which approxi-
mates the Neyman Pearson test in a simpler form are derived. The

performance of this integrator is compared with that for the ideal non- -

coherent int‘égré.tor.
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Chaptev |

INTRODUCTION

In order to improve target detection capabilities of pulsed radars for
target returns with small signal to noise ratios, a device which combines
the returns from several pulse transmissions is often used. This device,
known as the integrator, is generally of the noncoherent type, i.e., it
sums the radar returns after detection of the I. F. output, and makes no
use of phase information. The noncoherent integrator has been exhaus~

(1)

by Pulsed Radar.' The results of Marcum's paper imply that a detection

tively treated by Marcum' ™’ in his "Statistical Theory of Target Detection
scheme which makes use of both amplitude and phase of the I. F. signal
returns should be able to provide increased signal detectability.

‘In 'i‘his report, the Neyman Pearson detector, which uses all the avail-
able information in the amplitude and phase of the signal return is derived
and mechanized. The Neyman Pearson detector is optimum in the sense
that for a given false alarm probability, (the probability that noise is mis-
taken for a target), it gives the greatest probability of detection for a
target. For false alarm probabilities smaller than 10-6, a simpler sub-
optimum coherent detector which gives nearly optimum performance is
developed. The characteristics of this coherent detector are examined

and compared with those for the noncoherent integrator treated by Marcum

(1



Chapter 2

STATISTICS OF THE RADAR RETURN

This report will be confined to a discussion of pulsed radars. A short
pulse of duration v is transmitted every T seconds. Typically, 7/T may
be of the order of 10-3. The returned R. F. echo from a target is usually
heterodyned down to some lower I.F. frequency. This 1. F. signal has
both amplitude and phase information, although specié.l processing may be
required to utilize the phase information. l

A typical schematized transmitting and receiving system for a radar
whose transmitter signal is derived from a crystal oscillator and frequency
multiplier chain is shown in Fig. 1. The I. F. output has a fixed phase shift
from the reference oscillator ,‘of 6z + 93 + (2d/\)2w, where 92 and 63 are
fixed phase shifts inherent in the system, and 2d/\ is the round trip distance
to the target in wavelengths of the transmitted frequency. "If the target is
stationary with respect to the radar, then the phase of the vecho pulse does
not change from return to return. If the target has a radial component of
velocity with respect to the radar, then the change of phase of the echo
from pulse to pulse is M =2(dd/dt)/N = 4nvT/\; where v is the radial

velocity of the target with respect to the radar. Essentially, the frequency

returned is8 modified by the doppler frequency, fd = 2v/\ , which is sampled
every T seconds, resulting in a phase change of M = 4uvT/\ .

Phase information may also be obtained on a radar that has a pulsed os-
cillator such as a magnetron for a transmitter, although more, and more
critical circuitry is required. A system designed to preserve phase infor-~
mation is diagrammed in Fig. 2. The 1. F. obtained after heterodyning the
returned echo with the STALO, (a highly stable local oscillator), has a

random phase term er, in it, which appears because the transmitter fires

. at a random phase from pulse to pulse. This random phaae term, Or, can

be removed however, by heterodyning the I. F. with an oscillator which is
locked in phase with the transmitter after each transmission. This type of
oscillator, called a COHO, (coherent oucilla‘tor). is widely used for M. T. 1.
(moving target indication), applications. Extreme stability is required of
the STALO and COHO in this system to preierve the phase information.

‘With the requisite stability, the same kind of output as in the crystal con-

trolled radar is obtained.



The signal from the nt transmission of the radar is seen to be,
Vn(t) = Ancos (wc t+6+ny), | . (1)

where An is the amplitude of the signal return, w, the 1. F. center fre-
quency, § a random initial phase dependent upon the exact round trip
distance of the target from the radar, and ¢ a phase precession term de-
pendent on the radial velocity. If the radial velocity of the target is in
m. p. h., and the wavelength of the transmitted R. F, is in centimeters,
the phase shift from pulse to pulse is = (89V/\)2xT. The phase shift
during the pulse due to the doppler frequency in Fhe echo return is quite
small for most radars, and is neglected since it does not affect the results
which follow.

The signal is accompanied by a narrow band gaussian noise process,
whose spectrum is shaped by the band pass characteristics of the L. F.
amplifier through which it passes. A sample function of this random

process may be represented(z) as,
V(t) = r(t) cos [uct + O(t)l (2)

where r(t) is the envelope process, and 6(t) is the phase process, both of

which vary slowly with respect to W Expanding

V(t)

r(t) cos [uc(t) + O(t)]
r{t) cos 9(t) cos uct - r{t) sin Q(t) sin mct

x(t) cos w_t - y(t) sin w_t (3)

x and y are statistically independent gaussian random variables having a

joint distribution ) xZ + 2
e .
plx,y) = 'Z'i (4)
2no

where ot is the variance, or physically, is the noise power into a one ohm
resistor. )

The noise has been shaped by an I. F. bandwidth matched to the transmitte
pulse width . Thus two samples of noise taken at intervals much greater
than 7 apart show little corellation. Since T is usually greater than 100,

noise samples taken a transmission period apart are essentially independent.



'I‘hus the joint probability distribution for noise, ﬂt a given range, from N
~ T (x ty /Zu' )
n=1

cee ) = 5
N (~2mr7)N 5

transmission periods is

PlxysXp0 cous X ¥pr Y
The signal from the nt® transmission was seen to ﬁe
Y_n(t) = An cos (uct + 6 + ny)
£ An cos (&6 + n}) cos wt - An ai.n (6 + ny) sin w t

The x component is thus A c0l(6 + ny ), and the y component of the signal

is Anain(b + ny). The probability diatributmn for signal plus noxse is thus,
-(x -A co-(ﬁ +ny)) -(y -A ain(6+n¢)) /Za-

Pyant®y' Vn )= | P

(6)

The probability density distribution for the return from N transmission

periodq is
N
- E(X -A cos(6+m|:)) +(y -A sm(6+m|:| /Zo'
ntl
PaanlXpeXp o0 Xpp Yy« oY== ZN
(2w o)

n

It will be found convenient later to work with the envelope and phase dis-
tributions rather than with the x and y distributions. The probability density
distribution for sine wave plus noise in terms of envelope and phase is well

known, and is given by Davenport and Root ""Random Signals and Noise'", (2)

and others.

2 2 2 2
r -6’ +A yzd' -r A _cos® -5-ny)/fo

8) = n
2wo

. [x5y2 -1
where r_ = x *ty, ,and@_=tan ynlxn-

ps+N(rn’



For noise alone, i.e., An = 0, 2 2
r -r /2o

PN (rn. en) = ___n_z__ e
2o
which is the well known Rayleigh distribution times 1/2n, the probability
distribution of phase, The joint distribution from N returns is thus for

(9)

signal plus noise

pB+N(r1' rZ' . ')rN.!e‘ltez' ---’el“)=

N N | N '
2,,2 2 2
| "n‘ r -Z‘ r ¥A [0 1/¢ ZrnAncos(en-s-nqn
. _n=l ¢ e n&)l e n=l . - ,
(2.1r (4 )!I (10)

For noise alone

N
’ﬁ‘rn -er/zcz

n=1 ne
Padf i Tore e e s a0 8,00, 0.0 )F e
N e TN Oy B ONTT TN

(11)
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Chapter 3
THE NEYMAN PEARSON TEST

A procedure is desired for making a decision as to whether or not a
target exists at a given range and azmuth. The decision must be based on
the observed data, (the xn'a and yn's or rn‘a and en's)'. No apriori knowl-
edge of the number of targets in the area can be assumed, except that it
will be small as compared with the number of independent noise samples
taken. What is generally done in an automatic detection system, is to set
the noise threshold so as to obtain a false alarm rate, (rate of error in
calling noise spikes targets), of one or less per scan. Since there are
approximately T/r independent noise samples per transmission, and often
thousands of transmissions per scan; we should ~‘clona‘idér probabilities that
an individual noise spike will be mistaken for a target of from 10™° to 10710,

It is desired to find a test which will give the greatest probability of
detection for a given false alarm probability. The Neyma'n Pearson test
does exactly this. For a test between two hypothgaea. HO’ (called the
null hypothesis), and Hl’ at a given level, (probability of mistaking HO for
H)), it gives a test of maximum power, (probability of choosing H; when it
is true). The Neyman Pearson test is made by forming the ratio of the
probability density distributions for H, and H, p,(y)/pyly), called the
likelihood ratio. The value of the observed parameters are substituted in
this expression, and a number is obtained. If this number is greater than
some number predetermined by the desired false alarm probability, the
hypothesis Hx is chosen.

In our case, the null hypothesis is that there is only noise, and
Po = pN(ri, cee T B, el GN). The hypothesis H, is that there is a
target present with an initial phase 6, and a phase precessiony . The
likelihood ratio is

Pg ‘ks+N{rn, enq
pNFn' en}

where p's+N is given by (10) and PN is given by (11). The test is then,
whether

N N

2 1 -6 -
. -ZAn/z.,- _;Z'Zrn An cos(()n 6 mp.) o
&y =l n=l " >K (12)



The above test has no practical significance however, since it is only a
test of a target with a particular phase 5, and a doppler velocity corre-
sponding to the precession angle ¢, versus noise. Since we have no apriori
knowledge that a target will give a return with some particular value of 6,
and have no interest in detecting only targets with speciﬁc values of this
parameter, a more general test must be devised. Wh_a‘t is primarily desired,
is a test of the composite hypothesis that the target can have ar{y value of &
and y , versus noise. The adaptation of a Neyman Pearson test for a com-
posite hypothesis versus a simple hypothesis is given in Appendix A. 1t is

shown there, that if we make the test,
2on 27 | '

S+N(rys T,y +ov Ty Bys 0,0 oo oN)p(s)p(¢)d6 ag

‘pN-(rl.rz, .. TNy 91, 92, ... ON)
in effect averaging over 6 and ¢ that we will have the test of composite Hl’

0 JoPs,y

2K (13)

versus HO’ of the greatest power for a given level. Pp(6) and p(}) are the
probability density distributions for 6§ and{y respectively,
The target return may have any phase with equal probability, since M is

very small compared to the target distance. Thus
p(8)=1/2n for 0< 6< 2w (14)
= 0 otherwise .
Similarly, with most radars, the phase precession is greater than 2n

with a radial velocity of less than 200 knots. Thus for aircraft we may say

that

P(¥) = 1/2nr for 0<¢ <2n (15)

0 otherwise.

The integral, 2w

may be readily evaluated.

2w
SO Pg4N ({l‘n. 9n})p(6)d6 = ('16)
N N rrz1 + A;’; . N
nr -Z Zw T A _r _cos(@ -ny-5)
= n=1 " e n=1 ZG’Z 1 . ;z.n::l n n n 45
(2no )N Zn 0

let 8 wnp =¢



R R y—.

thetn: ) .
ZAnrncos(¢n-6)= ZAnrncos ¢, cos 6+Anrnsin ¢nain )
n=1 n=]
N N
= cos BZA r_cos ¢n+|in 6 zA r sin ¢
n=l n=l
-
N 2 N 2
= cos (6-a) ZA rncos¢ + ZA r_sin ¢
nx)l nx]
(17)
buf
2w
‘Zl’i'£ Greosld-al 45 1,(2) = Jtiz) | (18)

where Io is the modified Bessel function of the first kind and zero order,
and JO is the Bessel function of the first kind and zero order. Thus,
an

f(;pmJ s+N({r , 0 }) p(6) d& =p, s+N ({r , en})

2 2
A r cos(B -n\p)) +( Anrnsin(en-q;))

nel

(.2.1:0'2)!I

‘ﬁ Z r +AZ/20 ‘ J'
nel

(19)

" This is the probability density distribution independent ot the parameter
5, but dependent on .
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With this probability distribution, we may set up the test of a target

moving with given doppler velocity, or a stationary target, versus noise.

. Z
A /2
p¢s+N(ir ,9}) z /U

qurn’ 6:} )n = n- | (z Ar cos(e -nq-')) (ZA r am(e -mb? |

nel : n=l

(20)
is the likelihood ratio, (pl(y)/po(y)), we must compare with a number K.

The factor
Z A /zcr

n=l

is a multlplymg factor dependent on the amphtude and distribution of the
signal we are trying to detect, and does not involve any of the observed
data(rn's, and 0 's) This factor may thus be incorporat ed into the number
K giving K'. The function Io(l/tl’z R) is monotonically increasing with re-
spect to R, for R > 0. Thus 10(1/0' R) is greater than K' if and only if R is
greater than some other number K'". The test may then be simplified to

2 N ' 2

ZA r_cos (6 -ny) | + ZAnrnain (6_-ny) | > K (21)

n=]
When the observed 9 's and r 's are substituted in the above expression and

compared with number K" whtch is determined by the desired false alarm
probability, we have the Neyman Pearson test for a stationary target, or

target with a given doppler velocity, vs. noise. The rn's of the 1. F. proceds



- are obtained by linear envelope detection. The en's can be obtained by
phase comparison with the oscillator of Figs. 1 or 2 whose output is’

cos w t. The detection inequality may then be mechanized with a digital

dﬁmputor or with an analog scheme using delay lines.
The performance of this test is easily evaluated. Since

E An r, cos (O.n- ny)

.and n=1 N

z‘ A r sin(e - ny)
n=1
are linear operations on sine 9 and cos 9 ‘we may operate on signal and

noise separately, and use superpontion to combme the resuits. The signal

“from the nth return is A coa(w t + 6 + ny). Without loss of gveneralii.:y, we

can take & equal to zero, eince the test has been devised to _give the same

~results for all §. Then when we rotate back ny we find that the

rnsin(e - nq,) component vanishes, and

ZAr 903(9 - ny) = i{ An2
n=1.

In effect we are performing a rotation which adds up all the signals in phase,
each with a given weighting.

The noise is invariant under phase rotation, and for a noise process with
variance trz, the process which results from multiplying the noise voltage by

A has a variance A!Z‘ trz. The sum of N independent gaussian noise pro-
cesses with variance Aitrz is a gaussian noise process with variance

N
. . Z Ai o’z
. ns
The test is then equivalent to comparing the envelope of a sine wave plus
noise, to a given threshold. (Taking the square root of the sum of the’
squares of the two orthogonal components is equivalent to envelope detection),
The signal power is N 2 \
1 2
z E Ay

n=1
and the noise power is
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N .

N
The signal to noise ratio is 1/2231 Ai /cz. But 1/2 21 A
ns

is the total power received from the pulses modulated by the antenna beam-
shape as the antenna scans by the target. Since the statistics for signal and
noise are the same as for one return, we arrive at the identical result as if
all the returned power were concentrated into one pulse.

Although we have been discussing only a target return with signal ampli-
tude An. the signal return will more generally generally be C An. where C
is any multiplicative constant. The shape of the set of pulse returns is
constant, and is determined by the antenna pattern, and the rate at which
it scans by a target. The test for target amplitudes CAn is the same asthat
for A o' and since K'" is determined by the false alarm probability for noise
alone, this test is saxd to be a umformly most powerful test w1th reapect to
the amplitude of the signal return.

While the test described above has great theoretical importance, in that
it shows that the optimum detector for a target with a given radial velocity
gives the same results as if all the energy were concentrated in one pulse,
it is of much more practical interest to find the test which is best for all
radial velocities, rather than just one. To do this we must evaluate the

ratio

2w
P S+N({r , 0 }Ipl¢)dy
= (22)
2 pN( {rn’ en})
2 Za ém N N 7
. o 20f 1 1| = (z A (8_~ny))+ (£ A_r sin(e_-ny)fja
= e = ol 52 Z nFncos(® ny (n=1 nFpoin(@ ny ¥

Unfortunately, the integral involved is a difficult one to evaluate. Expan-
sion‘of I0 into a power series, and integrating term by term does not help
because the integrals of the higher order terms, (which are important),
become so complex as to be unmanageable. However, the Neyman Pearson
test may be mechanized in its integral form. The test will consist of

comparing

2m
S Ll / N 2 N . 2
o 0 ;7 (nz.)_:1 Anrncos(en-n\p)) +( = Anrnsm(en-mp)) dy (23)

n=1

to some constant, K',
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In its present form, the integral may be difficult to mechanize. However,

if we make the substitution,

n=(Ny=-(N-n4) ,

a little trigonometric manipulation shows,

/ (m A con(o, - nPE (B A sin(o - P =
n=1 ‘nrn “° n non " _

n=1

f N 2. N . 2
= (nzil A'nrncos (Bn + (N - n}¢))” + (ilAnrnem(en-l- (N =~ n)g)) (24)

for every Y . This last expression is8 more easily mechanized than the first,
Fig. 3 shows a theoretically possible mechanization of the expression

(23) by means of the identity (24). The I.F. output from the systems shown
in Figs.1l or 2 is the input to this system, and is processed before detection..
Each of the N-1 delay lines has delay T, the pulse repetition period of the
radar. Thus the N signal returns from a target, multiplied by the weighting
factors An are simultaneously available at the input to the summer. Pre-
ceding the delay lines are voltage variable phase shifters, which are
programmed by means of a sawtooth voltage to synchronously change their
phase by 27 over a time equal or less than a pulse width 7. Voltage
variable delay lines which might be used for this purpose are available,
The nth return goes through N-n phase shifters, and has an I.F. cosine
component of Anrncos (Gn + (N-n){), at the input to the summer. The
summer adds all the N 1. F. inputs, so that the output 1. F, of the summer
has an I. F. cosine cc&mponent of

X\ An r coa(()n + (N~-n)y),

n=
and a sine component of n2=:1 A , 8in (Qn + (N -~ n)y).
Linear envelope detection of the 1. F. is equivalent to taking the square root of the

sum of the squares. Therefore the output voltage of thelinear envelope detector

is
[ N 2 N 2
-
R(y) = Z At cos (en, (N-n)\p))"'(z}\ rnsin(en-i-(N-n)\b))
n

| A



This is equal to 12

/(ZA r cos (0 --n\p))z (fA r sin (Gn-n\P))
n=1

1

2

by Eq. (24). The envelope detector is followd by a zero memory nonlinear
transfer function, (which can be mechanized using diodes), IO(R(¢)/c2)
Finally there is a boxcar detector (a diode feeding a ca.pacxtor), which
integrates IO(R(np)/o' ) over the cycle of y which is 2w, and is "dumped", or
discharged, at the end of each cycle by a trigger developed from the trailing
edge of the sawtooth. The output of the boxcar detector is then put through
a threshold circuit which passes as targets only those outputs of the boxcar
detector greater than K'.

It is thus seen that the system of Fig. 3 exphcxtly mechamzes the test
given by expression (23). This system could also be used to detect targets
of only a given doppler velocity by keeping the phase shifters fixed at the
proper phase, rather than sweeping them over 2x. The nonlinear processor,
IO(R/o' Z), and the boxcar detector are not really required in this case,
(although leaving them in will not affect performance), and the output of the
linear detector can be sent directly to the threshold circuit,

It must be emphasized that the circuit of Fig. 3 is only a theoretical
mechanization of the Neyman Pearson test, and practical difficulties such
as maintaining the delay of N delay lines identical to each other to within a
small fraction of l/fc, where fc is the I.F, carrier frequency, would
probably make construction of the detector by this scheme impossible. A
digital scheme using the rn's and en's directly may be feasible.
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Chapter 4

PERFORMANCE OF A COHERENT INTEGRATOR

It is desired to evaluate the signal to noise ratio required for a given
i)roba.bility of detection, Pd » with a given probébility of false alarm, P
For purposes of simplicity, and so that we can compare the results for a
coherent integrator with those of Marcum' for the noncoherent integrator,
we shall assume that the signal return consists of N equai amplitude pulses,
Then

N N
| /(nf lA.nrncos(en-mu))z-\'(nE 1Anrnsin(en-mp))2 = (25)
o
- % z rncos(en-mp))" + (nz= , rnsin(e‘n-n\p)) 2

'

In processing this signal we would make all the A 's of Fig. 3 equa.l to
one, and change the nonlinear eleme nt from 1 (R/cr ) tol (A R/o- ), where

now the signal R is

R '—';/(nglrncos(en-mp))z (g r sin(en-mla))z (26)

n=] "n

It is seen that the test depends on the amplitude of the signal we are

trying to detect. If the test is set up for a particular value of A and o2

_ in the nonlinear element IO(A R/"’z), then the test will be most powerful

only for that A, and will be less sensitive for all other amplitudes of signal
return. Thus we do not have a uniformly most powerful test with respect
to A. What would be done in practice, would be to set up IO(A R/O'Z) for the
marginal signal, so as to get greatest sensitivity for it. Signals larger than
marginal are easily detected anyway. ,

It is instructive to investigate the value of IO(AR/G' . If we are interested
ina probabxhty of detection, P q° of about . 50, with a false alarm probability,

P_, of the order of 10™° then NA%/2¢%  15. poai ~NA. Thus,
AR/a'Z :30 For values of x greater than ten, I (x) ~ */N Zwx. (2) Thus
if AR/O‘ were to change from 30 to 31, the output of the nonlinear device
would be multiplied by approximately e.. It is thus seen that
S u 5 (.‘.\_&2&1) dy
0 o

is determined primarily by the peaks of AR(})/c 2. since these are very heavily
weighted,
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We should therefore expect that a device which detects the peaks of R(y},
should give a test nearly as powerful as that illustrated in Fig. 3 for
P < 1076
most powerful), with respect to A, This test is mentioned by Reed, Kelly,
and Root in '""Detection of Radar Echoes in Noise",(3' although this perform-

ance of the test is not evaluated. It is this test which will be investigated

and Pd ;,50, Furthermore, this test is uniform, (although not

here, rather than the test of Fig. 3, because the calculations for Pn and Pd

are much simpler.
We must first investigate the statistics of R{{)}). Let

N .
X(y) = =1 rncos(en'- ny) ' (27)
LY = T r 8in(6 -ny) o . (28)
n=1 ‘
Then

RW) =[x +y )’ (29)

Let |
Ne? pg(a) = E [x(¥) - X(¢ + o] (30)

wnere E denotes statistical average. For noise alone, E [X(¢). X($ +a)
E [x(0). X(a)], because of stationarity.

Thus for noise alone

N 2 I;N N ]
(1 po(a) = E| Z 1 rncosen'nz= i rncos(Gn-na)
but
E(rncos On Tr cos(em-ma)) =0
for m#n
‘v Nolp (a) = B :
. @ o = . -
po(a 2 E(r " cos Gn coa;(en na))
N rnZ
=z E(T [cos(26 -na) + cos na] )
n=1 n
N rnZ 2 N
= X ETcosna=o' Z cos na
n=] n=1
2 sin (N-i-zl') a - sin-g-
= g - (31a)
Zsinz- '
2 cos (N;I a) sin -Nzﬁ
= ¢ (31b)
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Similarly, let

No? o(a) = EX@ - Y(b+a)] = Ex(0) Y] (32)
N 2 :

=X E[rn cos® - sm(ﬂn-na)]

n

2
N [ 1
= nZE E l:— (sm[Zen- na] - sin na) |

| 2
N rn2 2 N
= - E(T sinnaf = -~ X Ssinng
n=] . n=1
2 cos(N+-;:)a - co,s%
= 0. - T {33a)
Zsmi
2 sin(N;la) sin% .
= -0 — (33b)
sin 3 :

po(a) and Xo(a) are normalized covariance functions for the bivariate

gaussian distribution, py(0) =1 andX (0) = 0.

" Let
. %
p0+3k0 = Koe (34)
N
K, = o242 % ¢ =ta 122
0 Po 0"’ % no Py
,/2N+1 . 2 Na . 2 N+1} .2 Na . Na
(ofe}-] ——a 8in -—— 4 sin a Ssin —— sin —
_ 1 2 2 2 2 2
KO(w)_F\/ 2 a - a
sin 3 NsinT
(35)
_ -1, N+ 1 . _N+l
1»0(&) = tan (tan( > )a) = > @ (36)

The notagion Po’ ho, KO and 4»0 is after Middleton. (4)

With these statistics for the noise, it is possible to calculate the prob-
ability that noise will exceed a given threshold is the interval from 0 to 2.

Let us consider the average number of crossings with positive slope of
a given level Ro, by the process R(t), during some long interval T. This

will tell us the average number of noise spikes n, which exceed a given

+

threshold in T. The probability that R is between RO and R0 + dR, is

P(Rg)dR = 5= | (37)
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[ ]
where n is the average number of crossings of the level, (of both slopes), and

. At is the average time required for a crossing. But

At = SR " (38)
IR] | :
The average value of At is given by,
= . _dR _ dR
At = Iﬁ - 0 ) (39)

{181 pti/r )t

=00

. where,p(l.{'l/Ro) is the probability density distribution for R given R = R,.

Solving for n

_  Tp(RydR ®, . : "L :
R s —ge— = T { IR]pRy pli/Rya - T { IR Ip(R, R R
-00 =00

(40)

This is the total number of crossings with both positive and negative
slope. The number of crossings with positive slope is
o0
n, = £\ [R|p(R, R, )aR (41)
+ 2 PR Ro

=00

* which if p(R/RO) is an even function, is

o0
n, = T.S 'Rp(R, R)dR (42)
0

In our particular ease, R is Rayleigh distributed, and we are working

over an angle { rather than t. It is shown in Appendix B and elsewhere(‘”

that, R z .
ndg ’ RZ
. 2 -
R R, e “rt -zirixo"(o)
p(R, R = ' ‘ . (43)
) J-2na’%_"0)
Thus RZ 0
-0 52
. 5 _ R
2o 0 2
_ T R,e d 20 K \'(0) .
5 = 0 Re 0
T ————— dR
0 fZﬂ g K'd(O)
2
RO

TRV Pk 7 “
L6

0'2\/ ZW
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L]
and the phase is - N;I @ , which are the same as the covariance functions,

ko(a) and.po(a), for the noise. The émplitude ate = 0 is NA = A'., The

probability distribution for signal plus noise at @ = 0 is the familiar prob-

(2), (4)

ability density distribution for the envelope of sine wave in gaussiannoise.

_ R%ar’® L (AR
. 2 0 2
p(R) Re 2No Ne¢ (49)
P/
No
But since we have taken the noise power N o 2. 1,
R%+a'l
p(R) = Re I(A'R).- - (50)

The peak of the signal, however, will not necessarily coincide with the
peak of signal plus noise, although the the two should be very close, since
A' is of the order of five. We shall calculate the small increase in R peak

due to the fact that the slope of R may not be zero at o = 0

The signal is fin Na
! 2
X L (51
sin -2-

This has a main peak ata = 0, (or 2%), of A', and many much smaller peaks

at which there is a very small probability that signal plus noise will exceed

the threshold Ro. Thus, we will consider signal plus noise only in the vicinity
of the main peak. For smalla we can approximate the signal by
Na
sin -
Sz A Na (52)
2
Expanding into series this is
(Nay (Mot
S~ A [l - .o }
= & * Tz - 63
and
N 3
ds (_29’_ N { _lga_') N
U + (54)
da - 6 60
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In our particular case we are interested in the probability of noise cross-
ing the threshold over an interval of (p, of 2w. The probability that noise
will cross twice in the interval can be ignored, since we are interested in
thresholds high enough that Pn = 10-6.

not cz. The exprecssion for Ko(a) is given in (35). If this is differentiateéd

N 2
For our process the variance is Ne

twice and @ set to zero we get
2

o - - =
Thus, our formula for P is J NG_Z “Nz-ll ' | -R.2
L P T Mo e
/ﬂNa’Z sNZ-l) -2
i No'z Ro ° Z?\Io‘z (e

For ease of calculation, the noise power out of the summer shall be taken

as one, i.e., NG'Z = 1. Then 2
. R0
J (Ney) T
Pn -V E Nb ROe (47

For a specific N and Pn’ R, can be solved for.

With the bias level now determined, it is desired to find the signal strength
required to give a certain probability of detection, Pd' The signal from the
nth return is A cos [wct +6+n ﬂ Again we may assume 6 = 0 without loss
of generality. At the output of the summer, the signal has an x component

N
of
A cos n ($-¢)
1

1

n
and a y component of

N
S A ) sinn (49

nsl

Let (6 = ) = a. Then the envelope of the signal is
| sinr-!g-
A —b , (48)

sina
R
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We will use an approximation for-S which uses only the first two terms

of the expansion, thus approximating

. Na
sin -—-Z-—
Al
N sin —g—-

in the region of small Na/2 by a parabola. (This will give an estimate for
A R, the average increase in the peak, smaller than it actually is). (See
Fig. 4).

2 2

' 2
o S;_Af[l arvel i raleilin ¢ el . (55)

If the signal plus noise has a slope of R at a = 0,the peak of signal plus

noise will occur at the point where

* Z
__ _ds_ _ _AN‘a
R = da ~ 1z (56)
if No is small. The amplitude of the peak above the amplitude ata = 0 is
AR = a [A'Nza N S P
substituting for a from (56)
ap o AN an®oro12R ]Z’ 6R*
24 24 ANZ A'Nz (58)

The probability distribution for the slope of signal plus noise when the
signal is constant, (ds/da = 0), and the phase modulation of the signal is the

same as that for noise, is givenin Middleton“’ as
-R?%/-2N6KY (0)
. e
R/R =
P(R /R) - (59)
~2 mN¢ Ka (0)
which is independent of signal amplitude.
2
‘. E(AR) = —Z (NT-D for N> 0 (60)

A'N 12— 2A'
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We have assumed Ny 2. 1 and have solved for Ko"(O) = -(Nz-l)/lz

2 |
‘. E(AR) = —2° “‘{2'1) = g for N> 10 (61)

A'N

The means of computing A' with a given Pd is then as follows. The

probability of detection with a given signal A' is

0 - RZ + A'2
Pd = Re 2 I.(A'R)d R ' (62)
\ N 0 .

0
This integral is tabulated in Margum(l) as the Incomplete Toronto Func-
tion. '

o _ RAan

R . I.(A'R}dR
1-'1'.._0(1,0,_“‘__)=S.Re 2 o(
S /T :

(63)
Ro
For a given value of P, and RO.A' can then be found. 1/N(A"- Zl_'A' ) is the

amplitude of the signal to the integrator that is required to give the desired
probability of detection. Figs. 5 and 6 show a comparison between the
integration loss for the coherent detector just discussed, and the ideal non-
coherent detector discussed by Marcum(l). The integration loss is defined
as the ratio in d.b. of the total input signal power for a given Pd and Pn'

to the total power that would be required in one pulse for the same Pd and
Pn' The integrator derived when the doppler velocity of the target was

known, had zero d.b. integration loss for all values of N, P, and Pn.

d
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Chapter 5

" CONCLUSIONS

The results plotted on the graphs of Fig. 5 and 6 show the superiority of
coherent over noncoherent integration. When the number of pulse‘s integra-
ted is greater than 30, the improvement is significant. At 100 pulses
integrated, it is about 3,5 d.b. Thus, a transmitter of one half the fsower
would give slightly better performance with a coherent integrator, than a
full power transmitter would give with a noncoherent integrator, when the
antenna beamwidth contains 100 target returns. Since transmitter power is

expensive, use of coherent integration on such a system might be economicallv

feasible.

It should be noted that the coherent integrator performs better when
P = 10710 rather than 10", This is probabily because at P = 10710, the
threshold is higher, and the integrator more closely approximates the

Neyman Pearson test. That is,
2n

{ 15 (ARM,
0 v

is more dependent on the peaks for larger values of AR(})/ 02 .
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RECEIVE LINE N
TRANSMIT LINE
. 4
cos (L) t+6+4,)
r \
* KLYSTRON
POWER AMP.
MIXER GATE
T A
CRYSTAL *
! 1 OSCILLATOR |— MIXER
COS Wt
~ T cos(wtras
LOCAL OSCILLATOR J{
cOS (it + 02+ () 27)
FREQUENCY
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IF, AMP CHAIN
, 4
cos (Wt +62+6, +@)z)
CRYSTAL
IF ouTPUT OSCILLATOR

Fig 1

Crystal Controlled Radar
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RECEIVE LINE -
cos (Wt +6,+&2m) ) —

TRANSMIT LINE

A
Cos (Wt+6y)

— > 1 MAGNETRON

MODULATOR
pPULSE

STALO
COS(Wiat+6)

MIXER

Y

MIXER

4

} cos (W-G3o)t+6r-6 +(Z)2M) |
oS ((W-0)t46-8)]

CRYSTAL
LF. AMP OSCILLATOR - MIXER
COS Wt
Y COS((W-Wio)t+6-~6,+65+(3L)27)
coHo tocK |
PULSE
MIXER - COHO o (T-Chr ) 16-6)
cos(txt +@+(8¢)2n
IF OUTPUT

Magnetron Radar
Fig 2
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Neyman-Pearson Coherent Detector

Fig 3
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Appéndix A

NEYMAN PEARSON TEST FOR COMPOSITE
HYPOTHESIS vs SIMPLE HYPOTHESIS

Lety = {yl, Yor eee s yn} be point in n-space representing set of ob=-
served parameters. po(y): prob. d.d. of simple hypothesis HO
12} (y): prob. d.d. of composite hypothesis H1 as function of

'al,az,... am

parameters Ay Ay oo. @
Then

R ®
o= T T
=00 =00 -

is prob. d.d. of hypothesis Hl‘

m
) -plag)pla,) ... p(&m)'dal. «oda,
e &

' m

Y is the space of observations
Y0 is the set of y's such that H0< is chosen
Y, is set of y's such that H, is chosen

Y = YOUYI’ YonY1=0

Po(Y ).is level of test (prob. of accepting H, when it is false)
Py(Y,))= v Poly)dy.
1
Pl(Yl) is power of test (prob. of accepting H1 when it is true)

Qo [0 o]
PI(YI) = S. .o S S P (y) dy p(al)p(az) .o p("i-n)d ald @yeoe dam
~00 =00 =00

010 ---am

~rr = piviay
Y
Choose Y, so that in Yo pl(y)/po(y) > mn.
In Y., py)/Pyly)<n.
Let a = PO(YI) be level of test.
Let T1 be set of y's such that Po(Tl)f_ a.
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Then it can be shown that PI(YI) s Pl(Tl), i.e., the likelihood ratio
method of choosing Y, gives a test of maximum power for a given level.
Proof: Let A = Tl nY1

P(Y-A):S; (y)dy > (y)y = m Pn(Y,-A)
1Y I_APIY Y_ﬂSYl_Apoyy n¥oel:

because (YI-A)c Y1
pO(Yl -A) = Po(Yl) - PO(A) = q - PO(A)

PI(YI) = P/(Y, - A) + PI(A) >na-1 PO(A) + P,(A)
P(T, -A) = STI- A Pilyldy < ST -A O(V)dy n Py(T)- A)
‘ a because T -4 cY

PO(TI -A) = Py(Tj) - Py(A) < a - PplA)

"« PT)) = P(T, - A) + P{A)< na -1 Py(A) + P (A)

ST PIY))> PUT)
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Appendix B

PROBABILITY DENSITY DISTRIBUTION FOR ENVELOPE
AND SLLOPE OF ENVELOPE OF GAUSSIAN PROCESS

The slope of a sample function of a process is given by
. R, - R
R = lim -
AT—0 AT
where R1 and R2 are the values of the sample function at times A T apart.
The probability density distribution for R given R, is then
. . R,-R,
P(R/R,) = lim P(—2=—)
’ 1 4 A ‘.f—oOr . AT ‘

The joint p.d.d. for R, and R2 is well known(z)’(4)£or-aRay1eigh Process,

PR, R = L2 2650 KEE) | [Ko"') R R, ]
1" 72h T 4 ; 0 2 <
_ o (I-KO(T)) o (l-Ko ('r))-

For small * we can expand KO(T) into a MacLauren series
= ' 1 " 2 e
KO(T) = KO(O) + KO (0)r + Z—-Ko (0)r™+ b

But KO(O) = 1 and since KO(T) is a maximum at zero, Kb(O) =0

1"
KO(T) ~ 1+ —%—Ko (0) 'rz for small 7

K3(r) ~ 1+ K) (0) °  for small v

Thus for small Rlz + Rg
- ———
_ RR, - 20°Kq(0) 72 R R, 1 1
p(Rl’RZ)— I 3 € Io 2 " 3 "2
-0 Kg(0)r o -Ko (0)~
X
But I x) ~ for large x-
21X
2
i (RZ-RI) RIRZ
S 2,2 T2
\/-R—IE—Z— ~2¢ KO(O)T e 2¢

0'2 ‘/’Zﬂcz K(')'(O) TZ



As T—0 R, must approach RZ 8o we may say

R
P(R;, RZ) ~ ;'Z— e

By a simple transformation

-R{

p(Rl’ = )1-._.0 = P(th R)

«

"R 1\2
w2 (R,-R))
Ry - 3
-20°K"(0) T
) 0
20 e
/-2’ K, (0) 7°
2
.2
L
R.e 20 e .-Zc Ko (0)

o V-2n o° Ky (0)

30
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GLOSSARY OF PRINCIPAL SYMBOLS USED IN

A,A! =
A ' =
n
[» 4 =
C =
d =
E(x) =
{f =
C
o =
JH -
10 =
K,K', K" =
KO =
A =
ko(a) =
N. . =
n =
n+ =
w =
w =
(o]
P =
n
Pd =
p(x) =
pN({rn’ en}) =
ps+ N({rnt en} ) =

’0 =
¢ =
L2 =
R(¥) .
RO =
r =

BULK OF REPORT

amplitudes of I. F'. signals

amplitude of I. F. from nth return

an angle (¢-¢)

a constant

distance of target from radar

statistical average of x, sometimes written x

center frequency of I. F.

~ constant phase angle

null and alternate hypotheses ‘
modified Bessel function of first kmd and zero order
conatants, numbers
Po 2y X ¢ =normalized covariance function
wavelength of transmitted R. F.
;;17 E(X(V) ¥(J +a) ) = normalized covariance function
(4

number of pulse returns from a target

integer; number of threshold crosain.gs

number of positive threshold crossings

radian frequency '

le‘fc = radian frequency of center of I. F.
probability of false alarm

probability of detection

probability density distribution of x

p.d.d. of sequence of rn's and On's due to noise

p.d.d. of sequence of r 's and 9 's due to signal
plus noise

p.d.d. dependent on y and 6, and ¢ respectively
=1)o . .

tan - =angular correlation function

an a.ng?e

precision angle of I. F. returns

envelope amplitude = V XZ(\IJ) + YZ(\IJ)

threshold level

observed 'amplitude of I.F. from nth return



x(t)

X

y(t)

Y(y)

1

No
signal

variance, or power of I.F. noise

interpulse period; period of time

pulse length; time interval

time

observed phase of I. F. from nth rcturn

voltage of process

radial velocity of target

cosine component of I. F. gaussian noise
Z r cos (en- ny)

n=l

sine component of I. F. gaussian noise
N

Z ro sin (Bn - ny})

ns=

33

[ ] ' .
3 E(X(y) X(y+a)) = normalized covariance function
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